
ww.sciencedirect.com

wat e r r e s e a r c h 7 7 ( 2 0 1 5 ) 1 5 5e1 6 9
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/watres
Review
Critical insights for a sustainability framework to
address integrated community water services:
Technical metrics and approaches
Xiaobo Xue a, Mary E. Schoen b, Xin (Cissy) Ma c,*, Troy R. Hawkins c,1,
Nicholas J. Ashbolt d,2, Jennifer Cashdollar d, Jay Garland d

a Oak Ridge Institute for Science and Engineering (ORISE), National Risk Management Research Laboratory,

U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
b Soller Environmental, 312 NE 82nd St., Seattle, WA 98115, USA
c National Risk Management Research Laboratory, U.S. Environmental Protection Agency,

26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
d National Exposure Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive,

Cincinnati, OH 45268, USA
a r t i c l e i n f o

Article history:

Received 7 December 2014

Received in revised form

21 February 2015

Accepted 18 March 2015

Available online 25 March 2015

Keywords:

Water services

Sustainability

System analysis

Integrated water management

Environment
* Corresponding author. Tel.: þ1 513 569 782
E-mail addresses: Xue.Xiaobo@epa.gov (

thawkins@enviance.com (T.R. Hawkins), as
epa.gov (J. Garland).

1 Enviance Corporation, 5780 Fleet Street,
2 School of Public Health, University of Al

http://dx.doi.org/10.1016/j.watres.2015.03.017
0043-1354/Published by Elsevier Ltd.
a b s t r a c t

Planning for sustainable community water systems requires a comprehensive under-

standing and assessment of the integrated source-drinking-wastewater systems over their

life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and

emergy) have been applied to elements of these water services (i.e. water resources,

drinking water, stormwater or wastewater treatment alone), we argue for the importance

of developing and combining the system-based tools and metrics in order to holistically

evaluate the complete water service system based on the concept of integrated resource

management. We analyzed the strengths and weaknesses of key system-based tools and

metrics, and discuss future directions to identify more sustainable municipal water ser-

vices. Such efforts may include the need for novel metrics that address system adaptability

to future changes and infrastructure robustness. Caution is also necessary when coupling

fundamentally different tools so to avoid misunderstanding and consequently misleading

decision-making.
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1. Introduction

In developed regions of the world, community water services

are mostly achieved through large engineered centralized

systems and through “siloed”watermanagement approaches.

Water services defined herein include the provision of safe

drinking water, removal and treatment of sewage, and

stormwater control. These services have been successful in

controlling waterborne disease (OECD, 2011), mitigating flood

damage (Jongman et al., 2012) and supporting firefighting

(OECD, 2010) at an inexpensive market price (i.e. not full-cost).

Increasing water demand, shrinking water resources, more

stringent water quality goals, and aging infrastructure have

resulted in a major asset management financial gap in coun-

tries like the US (US-EPA, 2002), threatening future afford-

ability. Future planning will be more complex with rapidly

developing economies and urbanization (WHO, 2012), the

necessity to provide adequate ecosystem services (Wenning

and Apitz, 2012) and to adapt to more intensified climatic

change (IPCC, 2012). Overall, because of increases in popula-

tion and decreasing water availability, coupled with continu-

ously increasing service costs, and deficiencies in water

system resilience, our current water services are not sus-

tainable for future generations (Chang et al., 2012; Strengers

and Maller, 2012).

A system level view of integrated water services is neces-

sary to develop more balanced and optimal solutions.

Focusing on just one part of the system, such as drinking

water or wastewater alone, even when using system analysis

tools such as life-cycle assessment (Ghimire et al., 2012; Igos

et al., 2014; Lederer and Rechberger, 2010; Lundin et al., 2000;

Memon et al., 2007; Mo et al., 2010, 2011; Remy and Jekel,

2008; Tangsubkul et al., 2005a; Tidåker, 2003; Venkatesh and

Brattebø, 2012; WHO, 2012) may result in shifting problems
to other sectors and miss more effective solutions only

possible when the full system is viewed. For example, a full

system approach that considers water-fit-for-purpose could

lead to the removal of firefighting flow from drinking water

provision. Additionally, framing water services around

resource recovery (e.g., energy recovered from food and fecal

residuals; nutrients returned to food production; and water

largely retained within the municipal region) would yield very

different system configurations and likely more robust and

sustainable water services (Ashbolt, 2011; Otterpohl et al.,

2003).

A major shift in resource governance would also be

necessary to achieve such coordinated actions (Pahl-Wostl

et al., 2012). Complications are evident when jurisdictional

issues are raised by the various, and often conflicting stake-

holders of source water (Winz et al., 2009) and municipal

water services (Malmqvist and Palmquist, 2005). It is therefore

no surprise that stakeholder-driven, and systems based ap-

proaches (Beall et al., 2011; Chang et al., 2012; Dobbie and

Brown, 2014; Lundie et al., 2008; Maheepala et al., 2010;

Malmqvist and Palmquist, 2005; Schlüter and Pahl-Wostl,

2007; Winz et al., 2009; Zarghami and Akbariyeh, 2012) are

increasingly seen as appropriate ways to address and solve

the complexities inherent to community water systems, and

their fundamental interactions with regulators and users.

Integrated community water management addresses total

water cycle management via the engagement of key stake-

holders that include city planners, citizens, regulators, utili-

ties and managers of source water for a developed region

(Thomas and Durham, 2003).

This paper addressed the overarching question: What are

the strengths and weaknesses of various sustainability

assessment tools used as a part of integrated community

water management, and how do they aid in the design of

next-generation community water services? We review a set

http://dx.doi.org/10.1016/j.watres.2015.03.017
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Table 1 e Example dimensions, objectives, tools and metrics for integrated municipal water management.

Dimensiona Objective Toolb Metric Preferred direction Key references/examples

Human Health Characterize health effects

from exposure to chemical and

pathogen hazards

Risk assessment tools Health-adjusted life years

(HALYs), quality adjusted life

years (QALYs), disability

adjusted life years (DALYs),

probability of infection, risk

quotient

Minimized Sometimes combined within

the social dimension (Fane

et al., 2002)

Trade-off between disinfection

by-products and pathogens

(Havelaar et al., 2000b),

Impacts of fecal-contaminated

recreational waters (Schoen

and Ashbolt, 2010)

Assess exposure to chemicals

and health effects

Life cycle impact assessment Comparative toxicity units Minimized TRACI tool (Bare et al., 2008)

Economic Capital and operational cost Life cycle cost analysis Life cycle cost ($) Minimized As used for distribution

systems, rainwater use

(Ghimire et al., 2012)

decentralized wastewater

(Wang, 2014)

As proposed for green roofs

(Carter and Keeler, 2008)

Evaluate externalities benefit-cost analysis net present value ($) Minimized

Characterize capital and

operational costs, externalities,

employment generation

Trip bottom line reporting GDP and genuine progress

indicator (GPI)

Maximized Regional scale (Kubiszewski

et al., 2013)

Environmental Assess depletion of water, land

and other natural resources

Footprints Water and ecological footprints Minimized Regional, basin, and

infrastructure scale (Boulay

et al., 2013; Hoekstra and Hung,

2002; Moore et al., 2013; Zeng

et al., 2012)

Calculate energy use Life cycle assessment (LCA),

emergy

Life cycle energy consumption

(mj), emergy (sej)

Minimized Infrastructure scale, water,

wastewater, stormwater

treatment option (Igos et al.,

2014; Lundin et al., 2000; Lyons

et al., 2009; Remy and Jekel,

2008; Stokes and Horvath, 2006;

Tangsubkul et al., 2005a;

Tillman et al., 1998)

Assess global warming

potential

LCA, footprint Life cycle global warming

potential (g CO2-eq), carbon

footprint (g CO2-eq)

Minimized

Assess eutrophication potential LCA Life cycle eutrophication

potential (g N-eq)

Minimized

Assess impact to ecosystem

services

Emergy Emergy (sej) Minimized, more renewable

emergy and most efficient

system

Regional, basin, global scale,

and treatment options

(Campbell and Garmestani,

2012)

Resilience Evaluate the capacity to deal

with change

Literature review and expert

opinion, combinations of

human health and

environmental tools, CREAT

No standard metric- both

qualitative and quantitative

Maximized Limited to date (Cordell and

Neset, 2014; Dessai and Hulme,

2007; US-EPA, 2013a), Novel

aspects described in current

paper

a Social and cultural dimensions are beyond the scope of our analysis.
b The overlapping areas of the research tools are described in Section 6 and Table 2.

w
a
t
e
r

r
e
s
e
a
r
c
h

7
7

(2
0
1
5
)
1
5
5
e
1
6
9

1
5
7

http://dx.doi.org/10.1016/j.watres.2015.03.017
http://dx.doi.org/10.1016/j.watres.2015.03.017


wat e r r e s e a r c h 7 7 ( 2 0 1 5 ) 1 5 5e1 6 9158
of widely accepted sustainability tools/metrics, their applica-

tions to community water services, and potential missing at-

tributes. While this paper focuses on the sustainability

assessment tools and not the entire decision-making process,

our review emphasizes how these tools can support the cre-

ative and adaptive capacities of civil society in a process to

identify and assess options that may truly put our community

water services on a more sustainable footing.
2. Current status of integrated municipal
water management

Integrated Municipal Water Management (IMWM) addresses

total water cycle management via the engagement of key

stakeholders (ThomasandDurham,2003). IMWMisastagedand

iterative approach used by utilities to plan and manage water

supply, wastewater and stormwater systems so as to minimize

their impact or restore the natural environment; to maximize

their contribution to social and economic vitality; and to

engender overall community improvement (Maheepala et al.,

2010). In the broader context, this approach is known as inte-

grated resource management (IRM). While IMWM largely fo-

cuses on water and its social-environmental context, IRM

deliberately spans the various resources (electricity, heat, ma-

terial,water,nutrientsetc.)associatedwithhumansystems,and

may identify importantsynergiesof otherplayerswith thewater

sector (e.g., co-digestion of food wastes with residuals organics

from wastewater (De Gisi et al., 2014; Zeeman et al., 2008)).

While several groups have somewhat independently

developed IMWM frameworks (Fuentes et al., 1996; Howe

et al., 2011; K€arrman et al., 2011; Lundie et al., 2008;

Maheepala et al., 2010; Malmqvist and Palmquist, 2005), all

focus on six key components (K€arrman et al., 2011) including

participation (why, when, and how stakeholders will partici-

pate) (Gabe et al., 2009; Lundie et al., 2008, 2006), vision (goals

for the desired future), problem formation (identifying critical

problems to be addressed), designing (identifying possible

solutions), comparing (assessing among combinations of so-

lutions to meet the vision), and choosing (decision-making

and commitment). Often, stakeholder groups are formed to

discuss, identify and state the problems to be addressed. As a

following stage, three key pillars have been suggested to aid in

designing possible solutions. They are composed of the access

to a diversity of water sources facilitated by a diversity of

centralized and decentralized infrastructure, provision of

ecosystem services for the built and natural environment, and

socio-political capitals for sustainability and water sensitive

behaviors (Wong and Brown, 2009). While various categories

of criteria have been suggested to evaluate the solutions, most

fall into the following five primary groups including human

health, economic, environment, social-cultural dimensions,

and an overarching assessment of resilience to future chal-

lenges. Example technical metrics and tools to assess/

compare community water-related options against stake-

holders' objectives are described in Table 1.

Stakeholder participation and socio-behavioral aspects are

fundamental in achieving the sustainability of community

water services, yet there are various institutional and gover-

nance issues that hinder this approach, particularly perceived
risks (Dobbie and Brown, 2014) and ‘the silos’ of water and

resource governance (Pahl-Wostl et al., 2012). Numerous ex-

amples exist where the public have rejected water treatment

approaches due to a lack of engagement or consideration of

the socio-cultural aspects of the community (Hurlimann and

Dolnicar, 2010; Stenekes et al., 2010). While we recognize the

importance of social, cultural and governance aspects when

selecting water service systems (Bertera, 2013), this paper

primarily focuses on approaches for providing appropriate

environmental, engineering, and human health perspectives

in the context of informing deliberative stakeholder dialog. A

broad range of tools and metrics exist to assess the sustain-

ability of water systems from the technology to the service at

watershed, country, and globe levels (Hester and Little, 2013).

Here we narrow the list of technical metrics/approaches to

those we consider critical to the built water services.
3. Water systems and key considerations

There are various ways to describe the built environment of

community water services and associated watersheds. The

water service interacts with a range of built and natural

infrastructural systems in a complex network. The major

flows and stocks of water, materials, energy and residuals are

illustrated with conventional (solid boxes) and examples of

possible future system elements (dashed boxes) in Fig. 1. This

system view illustrates the interconnections within commu-

nity water systems that tools and metrics need to address.

Starting with the environmental aspects illustrated in

Fig. 1, there is a need to account for the many ecological

processes and services that support human activities

(Brauman et al., 2007; Cochran and Logue, 2011; Dodds et al.,

2013). The natural components of the water systems include

precipitation, land use, runoff, infiltration, evapotranspira-

tion, surface water, and groundwater sources. These natural

components provide source water to the built infrastructure

system, process residuals/pollutants, support primary pro-

duction, shape landscapes, and control local/regional climate.

In return, the built infrastructure (i.e., infrastructure that

collects, treats, and distributes water/wastewater/storm-

water) influences the ‘natural’ environment through various

flows, including leaks from distribution and collection sys-

tems, withdrawal from surface and groundwater sources, and

discharges to surface and groundwater sources.

The conventional and example future systems (as shown

with solid vs. dashed boxes in Fig. 1) differ with regard to the

flows and stocks of water, energy, and nutrients. The con-

ventional water infrastructure aims to withdrawal as much

water resource tomeet the demand and discharge stormwater

as much and as fast as possible, resulting in an imbalanced

hydrologic cycle and loss of ecosystem services. Alternative

infrastructural choices restore the natural hydrology as well

as attain other societal goals such as recovery of imbedded

energy (via electricity production & heat capture), return of

residual nutrients to food production, and maintenance of

higher quality water for recreational use. Green and natural

infrastructure such as rain gardens, permeable pavements,

mature trees and green roofs incorporate natural capitals like

vegetation and soil to manage stormwater and restore the

http://dx.doi.org/10.1016/j.watres.2015.03.017
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Fig. 1 e System diagram illustrating key elements in community water services. The major flows and stocks of water,

materials, energy and residuals of water systems are illustrated. The conventional configurations and example possible

future system elements are described with solid and dashed boxes, respectively. DW, RW, GW, BW, DWTP, GWTP, WWTP

represent drinking water, rain water, greywater, blackwater, drinking water treatment plant, greywater treatment plant,

and wastewater treatment plant, respectively. The arrows represent emergy flows. While the circles mean outside sources

of energy, the semicircles describes various storage compartments.
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natural hydrological cycle (US-EPA, 2008; Romitelli, 1997;

Arden, 2014). Constructed wetlands can be used to simulate

natural wetlands and use renewable energy derived from

natural systems to replace fossil fuel energy used in conven-

tional treatment technologies to achieve the required purifi-

cation of water, and restore the hydrological cycle through

increasing evapotranspiration and filtration (Odum, 1983).

Current community water services negatively influence ni-

trogen and phosphorus cycles by releasing large amount of

nutrients as waste via combined sewage overflow, wastewater

effluent discharge, and sludge application (Tangsubkul et al.,

2005b; Tillman et al., 1998), and emitting greenhouse gases

duringwater andwastewater conveyanceand treatment (Short

et al., 2014). Nitrogen and phosphorus contamination via

wastewater is one of the major reasons for nutrient cycle

disruption, leading to eutrophication and hypoxia in many

coastal and riverine regions (US-EPA, 2013b). Alternative sys-

tem elements such as urine-diversion toilets and blackwater-

only sewers can contain these nutrients for food production

and avoid their direct release to the environment, promoting

restoration of nutrient cycles.

The example novel system elements capitalize on recent

research that identifies decentralized/semi-decentralized

systems as more sustainable for the environment (Luthy,

2013). As shown in Fig. 1, the specific decentralized/semi-

decentralized processes may include greywater treatment

and local reuse (either at the household or community
scale); blackwater co-digestion with food waste for energy

recovery; diverted urine and feces for fertilizer and soil

conditioner (Zeeman et al., 2008); and rainwater harvesting.

Greywater accounts for some 70% of residential wastewater

in a conventional sewer; separating, treating, and reusing

greywater onsite would reduce demand on the outside water

resource by up to 70% compared to conventional centralized

water systems (and the energy used in its conveyance).

Treated greywater has been reliably used for purposes such

as irrigation, toilet flushing, and clothes washing in

Australia (Barker et al., 2013). Local rainwater harvesting

could also provide additional municipal water sources,

depending on the level of treatment. Local rainwater har-

vesting has the extra benefit of enhancing system resilience

to storm events, drought and water shortage (Jones and

Hunt, 2010).

Essentially, the proposed novel elements change the

perspective on water services from the “siloed” and central-

ized water management thinking into integrated and

decentralized/semi-decentralized design following the prin-

ciples of biomimicy and resource recovery. While the novel

elements may present significant potentials in mitigating

energy use, resource consumption and nutrient export, the

system performances with individual novel elements from

environmental, economic, and social perspectives are still not

fully understood. The following discussion presents technical

tools and metrics that allow us to compare the performances

http://dx.doi.org/10.1016/j.watres.2015.03.017
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of conventional and alternative community water systems as

presented in Fig. 1 across the dimensions presented in Table 1.
4. Metrics and tools for addressing
infrastructural system aspects

We acknowledge that human health, economy, and

ecosystem impacts are intertwined. However, we have chosen

to classify them separately in order to discuss the metrics and

tools explicitly.

4.1. Human health risk assessment

The purpose of the human health assessment is to compare

the adverse health effects potentially caused by exposures to

hazards from water systems. The National Research Council

(NRC) risk assessment framework (NRC, 2009) outlines the

general steps required to assess risk from microbial and

chemical hazards. For the water systems considered, various

pathogens (viral, bacterial, parasitic protozoan and hel-

minths) and chemicals (disinfection byproducts, pesticides,

metals, etc.) are relevant.When ingested, inhaled, or absorbed

through the skin, these pathogens and chemicals may result

in a range of health outcomes from acute illness to chronic

disease and mortality. Therefore, an ideal human health

metric incorporates these various health outcomes. The

Health-Adjusted Life Year (HALY) is a class of metrics that

transforms any type of morbidity or mortality into an equiv-

alent number of life years (Hofstetter and Hammitt, 2002). The

two most common HALYs are Quality Adjusted Life Years

(QALY) which measure the actual health quality integrated

over time, and the QALY compliment, the Disability Adjusted

Life Years (DALYs). DALYs are the sum of years of life lost by

premature mortality and years lived with disability (Murray

and Acharya, 1997). To calculate DALYs, the time lived with

a disability is multiplied by a disability weight to make it

comparable with the years of life lost due to premature mor-

tality. In this way, both non-fatal and fatal health outcomes

can be considered and compared.

Of the two most commonly reported HALYs, DALYs have

been used as a human healthmetric to compare water system

alternatives when health outcomes are seemingly disparate

(An et al., 2011; Boulay et al., 2011; Haller et al., 2007; Havelaar

and Melse, 2003; Havelaar et al., 2000b; Lundie et al., 2008).

Havelaar et al. (2000a) discussed the risks and benefits of

drinking water disinfection using the DALY; specifically, the

tradeoff between the benefit of reduced microbial infection

when implementing ozonation and the potential dis-benefit

of an increase in renal cell cancer from the formation of

disinfection byproducts was quantified. Since these health

outcomes are different in duration, magnitude and impact,

overall risk was characterized using the DALY. The analysis

supported the use of drinking water disinfection with: “the

health benefits of preventing gastroenteritis in the general

population and premature death in patients with acquired

immunodeficiency syndrome outweighing health losses by

premature death from renal cell cancer”. However, the

magnitude of the overall disinfection benefit varied consid-

erablywhen key, uncertain parameters were changed, such as
the severity weight for gastroenteritis. Furthermore, the DALY

was limited by a lack of knowledge and available data for the

population exposure assessment. Other potential health

metrics, although also dependent upon the same exposure

assessment methods, are less data intensive and do not

require illness severity and duration data. For example, the

probability of infection (Agull�o-Barcel�o et al., 2012; Ǻstr€om
et al., 2007) and the risk quotient (Al Aukidy et al., 2012;

Leung et al., 2013), i.e., the observed hazard concentration

divided by the acceptable level (NRC, 2012), are useful for a

quick comparison of potential risk within a class of hazards.

Risk quotients have been used to evaluate the potential

health risks associated with pathogen (adenovirus, Norovirus,

Salmonella, and Cryptosporidium) and chemical (DBPs, hor-

mones, pharmaceuticals, pesticides, and other chemicals) for

hypothetical wastewater reuse scenarios (NRC, 2012). The

probability of infection associated with water and wastewater

system use has been assessed separately for conventionally

treated drinking water (Petterson, 2010; Teunis et al., 2010;

Westrell et al., 2003, 2004), contact with wastewater

(Charles, 2009; Schoen and Ashbolt, 2010; Soller et al., 2010),

rainwater reuse (Ahmed et al., 2014, 2011), and greywater re-

uses (Barker et al., 2013).

There is limited analysis that considers the entire commu-

nity water and wastewater system (Katukiza et al., 2014) and

alternative, decentralized system options (Ashbolt et al., 2006).

Whencomparingwater systemalternatives, theadversehealth

effects will differ in magnitude for each system option

depending on the hazards unique to each water resource, the

routes of exposure, and the failure/event impacts of each

technology. Computing all the human health metrics for each

option is time consuming and unnecessary. Moving forward,

the probability of illness and risk quotient can be assessed in a

screening-level assessment to identify themost critical human

healthhazards, forwhich theDALY is estimated. Thesemetrics

may be computed over different time scales to correspond to

the functional units and expected system life-times defined by

the life cycle assessment and the overall system-level risks as

long as the variation in health burden is captured.

4.2. Economic aspect: cost analysis

A key, often overriding consideration in any decision related

to investment in water infrastructure is the cost. Various

methods such as life cycle cost and benefit-cost analyses

exist to quantify the costs of water services. While large

upfront costs often dominate the discussion of options for

providing water services in current centralized systems, the

goal of a more complete cost analysis is to weigh initial,

direct costs together with costs occurring over the entire life

cycle of a system and together with indirect, environmental,

societal costs. Examples of direct upfront costs include the

costs of planning, materials, and labor. Often, life cycle

costs include direct costs associated with materials, con-

structing, operating, maintaining, and eventually decom-

missioning or repurposing infrastructure for parts of entire

water systems.

Beyond life cycle costs, there are a number of indirect,

environmental or societal costs and benefits which should be

considered. These include, the cost of health effects caused by

http://dx.doi.org/10.1016/j.watres.2015.03.017
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air emissions associated with the electricity used to pump and

treat water andwastewater (Fann et al., 2013; Pabi et al., 2013),

the cost to heat household hot water (Morales et al., 2013), the

cost associated with increased illness from recreational and

drinking water pathogen exposures (Collier et al., 2012;

Dwight et al., 2005), the cost of imbalanced hydrological

cycle and the diversion of water flows from ecological needs

versus the electricity savings associated with the increased

insulation provided by a green roof (Clark et al., 2008), or the

value of green space and natural infrastructure in an urban

area provided by rain gardens, vegetation, wetlands or aqui-

fers used for wastewater and stormwater management

(Bowman et al., 2012; Page, 2010).

Benefit-cost analysis (BCA), often incorporating a variety of

direct and indirect costs and benefits, aims to provide a

quantitative assessment in monetary terms for decision

making (Arrow et al., 2004; Mishan, 1978). Although BCA has

been applied to assess the costs and benefits of various

infrastructure projects and policies, the BCA approach has

been challenged in the following aspects. First, due to the

difficulty to forecast causal relationships, errors such as

omitting certain costs and benefits may occur. Second, the

ambiguity and uncertainty involved in quantifying and

assigning a monetary value to intangible items could lead to

an inaccurate analysis. Third, the choice of discount rates can

significantly influence the estimated net present values of

BCA. Last, BCA assumed the distribution of costs and benefits

could theoretically be corrected via transfer payments, which

may result in double counting.

Moving forward, the coupling of economic impact analyses

with sensitivity analysis can identify the influences of key pa-

rameters (such as discount rates), incorporate the distribu-

tional effects of a decision (US-EPA, 2010), and consdiser a full

specturm of costs and benefits connected with risk and life

cycle assessment (Hardisty et al., 2013). In addition, there is a

need to build a body of knowledge regarding the cost and

benefit outcomes associated with less common options for

providing water services such as those based on principles of

water fit-for-purpose, source-separation of waste streams,

material/energy recovery, and the use of natural processes for

water treatment. A research agenda to address these issues

should include the development of standardized datasets,

which can be combined in various configurations to support

efficient and fair comparisons of a wide variety of system op-

tions. These datasets should support the incorporation and

attribution of multiple benefits such as those indirect costs

discussed above as well as electricity recovery from biogas, the

reuse of nutrient-dense streams and the avoidance of fertilizer

production and waste management, capture and reuse of

rainwater, and the reuse of greywater for non-potable pur-

poses. It should also include efforts to bound the uncertainty

and specify awide rangeofhumanhealth (Fannet al., 2013) and

environmental impacts (Daily and Matson, 2008).

4.3. Ecosystem outcomes

Life cycle assessment, footprint analyses and thermodynamic

approaches such as emergy analysis are widely utilized tools

to assess environmental impacts of products and processes at

system levels. The strengths and weaknesses of applying
these tools in water resource and infrastructure management

are described below.

4.3.1. Life cycle assessment of water systems
Life Cycle Assessment (LCA) is a well-established method for

quantifying energy consumption and environmental impacts

through the entire life-cycle of a product or process. In water

systems, a life cycle inventory tracks the energy and material

inputs for producing, constructing, operating, and maintain-

ing water and waste services, and associated releases into the

air, water and soil environments. Life cycle impact assess-

ment quantifies specific aspects of environmental and human

health impacts of services in terms of global warming,

eutrophication, acidification, ozone depletion, photochemical

oxidation, ecotoxicity, and non-carcinogenic and carcinogenic

human health impacts.

LCA approaches have been widely used to analyze the

direct and indirect environmental impacts of specific water

management elements, i.e., various options for drinking

water supply systems, wastewater conveyance and treat-

ment, stormwater management, biosolid systems, or treat-

ment chemicals such as disinfectants and coagulants. A

number of comparative LCA studies have provided the

comparative energy and environmental evaluation of water

system elements at household, community, and city scales in

order to assist in selecting preferred options (Lyons et al., 2009;

Stokes and Horvath, 2006, 2009; Stokes et al., 2013). The life

cycle environmental impacts of water service options are

influenced by the choice of system boundaries, functional

units, allocation methods, embedded databases, and life cycle

impact assessment approaches. The majority of these studies

illustrate that the operation phase is the dominating contrib-

utor to impacts, compared with the design, construction and

demolition phases. The relative contributions of electricity

and chemicals are variable, depending on the energy mix,

specific treatment technology and local topographic condi-

tion. Depending on the choice of life cycle impact assessment

approaches, diverse performance indicators are available to

evaluate the environmental and human health impacts of

water services. However, energy and nutrient related impacts

appear to dominate for water services, suggesting a limited

number of key LCA measures for water systems, such as

global warming potential, energy use and eutrophication po-

tential, as a good starting point for LCA of water systems.

However, there are still shortcomings related to the

application of LCA approaches for assessment of water ser-

vices, such as the lack of consideration of water scarcity,

disruption of natural hydrology and impacts of climate and

demographic change. Further, several aspects of LCA meth-

odology are still under development, including incorporation

of uncertainty and variability assessment, integration of sys-

tem dynamic processes, inclusion of ecosystem services,

reflection of appropriate temporal and spatial scales, and

improvement of impact assessment tools.

LCA studies that evaluate the whole anthropogenic water

cycle from water extraction to wastewater recycle and reuse

are generally lacking (Lundie et al., 2004). Furthermore, LCAs

inwater systems have yet to explore issues perceived asmajor

concerns of fit-for-purpose water reuse schemes (e.g., phar-

maceuticals, personal care products, disinfectant by-
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products, pathogens and brine concentrates) (Richardson

et al., 2011). There is also little scientific consensus for how

to comprehensively assess environmental and human health

impacts of water use, although a number of methods and

indices have been developed to compilewater use inventories,

and generate midpoint and endpoint methods for addressing

water scarcity (Boulay et al., 2011, 2013; Hanafiah et al., 2011;

Pfister et al., 2009).

In order to improve current limitations, the future water

LCA efforts should include 1) compiling the life cycle in-

ventory of the whole anthropogenic water cycle including

both centralized and decentralized options, 2) development of

impact assessment tools to evaluate the environmental and

human health impacts of water scarcity and emerging con-

taminants, and 3) integration with additional pieces such as

chemical and microbial associated risk assessment, foot-

prints, emergy, and resilience analysis.

4.3.2. Footprint approaches
The “footprint family” of environmental indicators, including

carbon footprint (Wiedmann and Minx, 2008), ecological

footprint (Wackernagel and Rees, 1996) and water footprint

(Zeng et al., 2012), applies life cycle thinking to analyze the

environmental releases and resource requirements of prod-

ucts and processes. The Carbon Footprint (CF) for water ser-

vices accounts for the global warming gas emissions during

the design, construction, operation, and decommission stages

of community water infrastructure. The Ecological Footprint

(EF) (Wackernagel and Rees, 1996) measures the productive

land area required to supply the resources consumed and to

assimilate the residuals (e.g., CO2, nitrogen in wastewater)

generated for a process or a product or a region. The Water

Footprint (WF), initially introduced by Hoekstra and Hung

(Hoekstra and Hung, 2002) is analogous to the “ecological

footprint” and is used to estimate the volume of water

required for the production of goods and services.

Although footprint analysis may provide insight into the

design and management of water services, further develop-

ment and novel indicators are probably necessary in order to

form a comprehensive understanding of community water

systems and to aid in strategic planning for more sustainable

water systems. To date, CF's have been described for produc-

tion and distribution of drinking water (Mo et al., 2011),

collection and treatment of wastewater (Remy and Jekel,

2008), and the handling of sludge (William and Mciwem,

2009). Despite valuable attempts to assess community water

systems, the CF arising from the holistic analysis of the

drinking, stormwater and wastewater systems requires

further development in order to provide an integrated

assessment of the built environment water cycle, and more

importantly, to provide a systems-level view also suited to

assess radically different options. Typical EFs of water ser-

vices are limited to themeasurement of land area, and carbon

dioxide emissions during transport and processing of

municipal water. The EF does not account for hazardous

(chemical and microbial) environmental releases, nor does it

measure water (surface and ground) resource availability. The

WF is limited to the analysis of embodied virtual water, such

as in a nation's economy and to trace water-intensive stages

along products' supply chains (Hoekstra et al., 2011).
Shortcomings of the WF concept which hinder its use for

designing next generation water systems include: 1) an

incomplete accounting of the natural and built environment

water cycle (Chapagain and Tickner, 2012), 2) limited capa-

bility to characterize the temporal and spatial variability of

watershed hydrology and related water resource availability

(Zeng et al., 2012), 3) no description of ecosystem services, 4)

lack of an appropriate description of the environmental and

human health risks associated with municipal water (Pfister

and Ridoutt, 2013), and 5) an inability to provide solutions

towards water resource management and infrastructure

design (Chapagain and Tickner, 2012).

In order to overcome the above shortcomings of water

footprint for water infrastructure design, the following addi-

tional approaches are suggested: 1) incorporation with an in-

tegrated bio-physical model to describe natural and the built

water cycle with appropriate temporal and spatial resolution;

and 2) combination with life cycle impact, risk, emergy ana-

lyses to provide a comprehensive understanding of hydrology,

environmental and human health risks, and role of ecosystem

services.

4.3.3. A thermodynamic approach: emergy analysis
Emergy analysis is a system-based method applicable to

various scales that incorporates environmental, social, and

economic aspects into a common unit of nonmonetary mea-

sure (solar energy equivalent joule, sej). Emergy is defined as

the available energy of one kind previously used directly and

indirectly to make a service or product (Odum, 1996). It is

based on the observation of the patterns of energy flows in

ecosystems and economic systems during self-organization.

It is based on the theory that all systems (ecological, social

and economic) are centered on the transformation of available

energy. For example, the transformity values (total emergy

input required to generate one unit of energy out) for wind

energy, and phosphate fertilizer are 1.5E3 sej/J, and 1.0E7 sej/J)

(Odum, 1996). This means that the processes generating

phosphate fertilizer require considerably more upstream en-

ergy investment (geological sedimentary cycle for phosphorus

rock to regenerate and the fossil fuels needed in mining and

formulating it as fertilizer) than what it takes to regenerate

wind energy.

Distinct from the aforementioned approaches, emergy

accounting provides a unique platform to combine economic

activities (mainly water needs and water disposal) and the

hidden ecological costs (via ecosystem services) into a com-

mon measuring unit, sej. It represents a fundamental change

in perspective from a user-based (i.e., monetary exchange) to

donor-based (energy used) value system. This approach al-

lows the behavior of a system as a whole and the interactions

between subcomponents to be observed and optimized. This

can be applied to water systemswith varied components such

aswater in biological systems, various sourcewaters, drinking

water, wastewater, and stormwater. In addition, emergy the-

ory implies that prevailing systems are those where designs

maximize available energy by reinforcing resource intake

optimally. This statement includes maximizing the resource

intake and operating at the optimum efficiency for maximum

productivity (Odum, 1996). The same holds for water systems,

particularly for community water services. Hence, the current
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water management seeking endless sources of new supply,

rather than maximizing the productivity and efficiency of the

whole system, is not sustainable.

Moving forward, the whole water systems including both

natural and built components should be assessed with

emergy approach. Although emergy analysis is capable of

addressing different scales of systems, it has not been re-

ported for complete community water systems. Rather,

emergy studies have largely focused on only one of the sub-

systems, such as drinking water treatment (Arbault, 2013;

Buenfil, 2001), the water distribution system (Buenfil, 2001),

wastewater treatment and health effects (Bj€orklund, 2001),

wetland treatment (Arias and Brown, 2009; Nelson, 1998), the

natural hydrological cycle (Watanabe, 2014), or watersheds

(Romitelli, 1997). In addition, the alternative water systems

which incorporate hydrological restoration and resource (en-

ergy, carbon, nutrients, and water) recovery should be

emphasized in the future research agenda for community

water services.
5. System resilience and adaptability

While there are many interpretations of resilience, we have

adopted a definition suitable for infrastructures, “the ability to

prepare for and adapt to changing conditions and withstand

and recover rapidly from disruptions” (Stockholm Center,

2007). The concept of resilience was developed for systems

where humans and nature co-exist, and describes the capac-

ity of the system to remain within desired states given

changing conditions (Folke, 2010). For water services, the

desired or operative state provides for critical services such as

public health protection, drinkingwater supply and sanitation

needs (Howard et al., 2010).

To enhance the resilience of a community water system to

disruptions, improving adaptability of the natural-engineered

system is as important as strengthening social preparedness

through governance, community outreach and education

(Ananda and Proctor, 2013; Bettini et al., 2013; O'Rourke, 2007).
The US EPA provides a set of tools (such as CREAT, CBWR,

VAST, and WHEAT) to assess the vulnerability of water,

wastewater, and combined utilities to loss of service due to

natural and human induced risks (US-EPA, 2013a). Most of

these tools focus on emergency management planning and

stakeholder engagement to identify and improve communi-

cation with relevant interconnected stakeholders (i.e., hospi-

tals, agriculture, and power system operators). A few of them

include a narrative analysis of adaptive measures to climate

change (such as CREAT). While we recognize the importance

of the social dimensions, this paper aims to review resilience

assessment frameworks that relate to the built infrastructure

and interconnected environmental elements with the pur-

pose of ranking alternative engineered water services.

There is no standard resilience assessment approach or

metric. Ideally, the assessment should be participatory and

identify the system components and interactions, critical re-

quirements for system operation, and potential future

changes (Stockholm Resilience Center, 2007). Although both

qualitative and quantitative approaches were proposed,

qualitative approaches to assess resilience are more common
in the literature. Balsells et al. qualitatively compared the

resistance, absorption and recovery capacitates of alternative

stormwater management options for flooding conditions in

Rotterdam and New Orleans (Balsells et al., 2013). The WHO

presented a qualitative resilience assessment to identify the

vulnerability and adaptive capacity of water services to future

climate changes, such as precipitation frequency and in-

tensity (WHO, 2010). On the other hand, Ayyub et al. suggested

quantitative resilience metrics incorporating a measure of

robustness and rapidity of recovery for various qualities of

interests under event disruptions (Ayyub, 2014). Similarly,

Hwanga computed a simplified resilience metric as the vol-

ume of water not supplied to customers over the duration of a

pipe failure event (Hwanga et al., 2013). We are not aware of

any applications of a quantitative measure of resilience for a

community water system that assesses the multiple di-

mensions in Table 1 or complex challenge events, such as

climate change, hurricane, flooding or drought.

The major limitation of the existing work is the lack of a

broad scope of impacts such as energy consumption,

ecosystem services, and economic evaluation (Ayyub, 2014). A

second limitation is the lack of a comprehensive resilience

assessment of both long-term changes and event disruptions.

Moving forward, assessing the resilience of alternative water

systems should explicitly consider the robustness, adaptive

capacity, and rapidity as they relate to the critical re-

quirements identified for the community across the different

challenges including population change, climate change, and

catastrophic events, either qualitatively or quantitatively. A

screening-level qualitative metric based on descriptive sum-

maries of evidence from literature and expert opinions will

likely pull from the data collected to estimate the other met-

rics, such as technical specifications, performance data, or

water demand. Following the screening-level assessment, a

quantitative metric may be calculated for key challenges

eeither disruption or system change- and qualities of interest.

The quantitative metric will likely require the use of tools

previously described to estimate the impact of a challenge on

critical services over the duration of the challenge. For

example, QMRAmay be used to estimate the health impact (in

DALYs) resulting from a flooding event over the course of the

event and the recovery, given alternative adaptive measures.

The resulting health impacts time series can then be used to

calculate the robustness and rapidity in combination with

other information on time to recovery for the human health

dimension of resilience.
6. Overlapping and different foci of the tools

Despite different methodological roots, the discussed tools

share overlapping research interests and concerns (Table 2).

For example, while the foci of water footprint and water-

focused life cycle impact assessment are different, both

tools can provide quantitative metrics to support water

resource management. The existing water footprint relies on

water use indicators in the inventory phase, assuming exist-

ing per capita demand will continue. In contrast, the LCA

practices emphasize impacts in the areas of human health

protection, ecosystem quality, and resources, based on
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Table 2 e Considerations included in the discussed tools.

Considerations Life cycle
assessmenta

Water
footprintb

Emergy
analysis

Human health
risk assessment

Life
cycle
cost

Benefit-cost
analysisc

Resilience
assessmentd

Energy

Use

Direct energy consumption X X X X

Indirect energy consumption from supply chains X X X X

Energy consumed in the built processes X X X

Energy consumed in natural processes X

Risks Direct human health risks X X X X

human health risks from supply chain activities X X

Human health risks from discharge or disposal of products X X X

Accidental human health risks X X X

Occupational human health risks

Ecological risks due to the depletion of natural resources X X

Costs Cost for built processes during design, construction, operation, & decommission stages X X X X

Cost for Environmental services X X

Water

Use

Direct water consumption X X X X X X

Indirect water consumption from supply chain/life cycle processes X X X X

Natural water flows X X X

Anthropogenic water flows X X X X

a The current practices include neither microbial related risks, nor a complete description of natural and anthropogenic water flows.
b The current practices don't contain a complete description of natural and anthropogenic water flows.
c The current practices include the environmental and human health consequences which can be monetized.
d The most common reported considerations for water systems from literature review are checked in Table 2.
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freshwater use inventories and cause-effect chains. Similarly,

risk assessment, life cycle impact assessment, and benefit-

cost analysis are capable of evaluating the risks of water

systems. These three methods differ in the coverage of risks

and spatial and temporal resolutions. Life cycle impact

assessment systematically evaluates direct, upstream and

downstream risk, and risk to built and natural environment.

Benefit-cost assessment has a similar coverage but it is

generally limited by inclusion of endpoints that can be

monetized. Risk assessment may be directed to local micro-

bial and chemical risks due to human exposure of the water

flows. Additionally, both emergy analysis and LCA can assess

the indirect energy consumption of water systems. The life

cycle energy consumption includes the direct and indirect

energy consumption from the built processes. In addition to

the energy consumption captured by LCA and emergy anal-

ysis, the emergy method also accounts for the embedded

energy (beyond fossil fuel-based energy) of the supporting

natural resources (e.g., groundwater stocks, wetlands, rain

and evaportranspiration flows).

Resilience assessment may include any of the consider-

ations relevant to the protection of the human health, a reli-

able supply of water, ecosystem services, or others depending

on the identified critical water services. The most reported

considerations for water systems are water supply and human

health,marked in Table 2. Ultimately, the considerations of the

resilience assessment are specific to the selected future chal-

lenges and critical services of the water system. Resilience

assessment overlaps in considerations with many of the pre-

viously listed tools, but with a view toward performance under

future change or challenge rather than nominal conditions.
7. Coupling metrics/tools for integrated
water management

Coupling multiple tools appropriately has the potential to

better capture the complexities of water systems at different

levels and provides amore comprehensive view of sustainable

water management. For example, the combination of life

cycle assessment, risk assessment and emergy analysis could

evaluate the performances of a water system for environ-

mental, built infrastructure and human health dimensions.

The human health risk assessment tools provide detailed

assessment of chemicals and microbes of water systems,

which are currently lacking in other tools like life cycle impact

assessments and emergy analysis. Emergy analysis provides a

description of ecosystem service landscape where the built

infrastructure resides, an important perspective lacking in

both life cycle impact and human health risk assessment.

In addition, in order to promote the selection of systems

which are robust against hazardous events and resilient in the

face of long-term societal or climatic changes, it is important

to consider the effect of relevant events and scenarios on the

metrics provided by each tool. Too often decisions are focused

on nominal and near-term conditions, not including lower

probability but high risk failure events and future changes.

Resilience assessment could identify the challenges and op-

portunities for water systems to recover from, and adapt to,

long-term and short-term hazards.
The challenge when coupling multiple complex metrics is

to convey the objective and scope of each tool and the

magnitude as well as uncertainty of each metric, and use

them to inform the decision process, together with other so-

cial, legal, fiscal considerations and obligations. In practice,

time and resource constraints make it difficult to apply all

tools and collect all of the information one would ideally

synthesize for decision-making. Therefore, a tiered frame-

work for calculatingmultiple metrics for water systems needs

to be developed (Lundie et al., 2008). When presenting results

for system options across multiple metrics, it is important to

communicate the relative uncertainty for eachmetric to allow

for proper interpretation of qualitative and quantitative re-

sults. All of the tools described here involve the use of variable

and uncertain inputs for calculation. To represent these

sources of uncertainty and variability, metrics are best pre-

sented as probabilistic distributions or with error bars.

Important information is lost when only considering the best

estimate or median results.

Overall, the sustainability tools described above represent

distinct research foci, different spatial and temporal resolu-

tions, and various fields of application. Although appropri-

ately coupling these tools can potentially provide a more

complete system perspective for various dimensions than a

single tool, caution should be taken to clarify the system

boundaries and to ensure proper development of the sus-

tainability tools.
8. Conclusions

We conclude that a comprehensive assessment of the whole

water cycle (both built and natural water components) and

full community water services (including water resources,

drinkingwater, sanitation, firefighting, irrigation, stormwater,

wastewater management and ecosystem services) is required

to evaluate system sustainability and simply not move issues

to other domains and cause unintended consequences.

Comprehensive assessment across the entire water cycle that

addresses environmental, economic, and human health as-

pects are lacking. Examples of metrics and tools for such a

comprehensive approach are available (Table 1), but their

method and dataset limitations for quantifying ecosystem

services related to community water systems, novel water

system configuration, synergistic water-energy-carbon-

fertilizer nexus, and system adaptability to future changes

all require further research. Often, they are rarely combined

into an integrated sustainability framework to evaluate the

built water system without compromising natural water ser-

vices. Therefore, an imminent research need is the demon-

stration of this integrated approach with real case studies to

support decision making.
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