

June 22, 2011 (Wednesday) 55th EOQ Congress

KEMPINSKI HOTEL CORVINUS REGINA BALLROOM

Erzsébet tér 7-8, Budapest V.

25.1. CLOSING PLENARY SESSION

Wednesday 13:30 – 17:00

Session Chair: Pál Molnár, President of the Hungarian National Committee for EOQ and Professor at the University Szeged, Congress Chairman, Hungary

14.00 Innovation of Quality – Quality of Innovation The Way how KNORR does it

István Lepsényi, Director General, Knorr Bremse Hungary Ltd., Hungary

Lepsényi, István (Hungary)

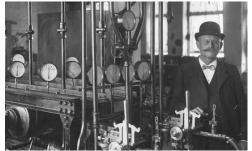
István Lepsényi was born in Budapest, Hungary on September 7, 1949. He earned a degree in mechanical engineering from the Technical University of Leningrad in Saint Petersburg, Russia, an economic engineering degree from the Technical University of Budapest, Hungary, and a special economist (university leaving certificate) from the University of Economics. Currently, he serves as Managing Director for Knorr-Bremse Fékrendszerek Kft., working to dynamically increase production, developing efficiency and quality, establishing, organizing, and extending the activities of a R&D centre, organising the sale in Central-Eastern Europe, and establishing Knorr-Bremse in Russia. Previously, he has worked with Hungarian Suzuki Rt. as Managing Director (1991-1994), focusing on starting and developing the company and its production network, AUTOKONSZERN Rt. as President and Managing Director (1990-1995) directing negotiations with the Suzuki projects, and developed robot technology and manufacturing with IKARUS (1974-1990). Lepsényi contributes actively to the representation of the Hungarian automotive sector's interests through his social and professional memberships: he was Vice President of the International Organization of Motor Vehicle Manufactures (2002-2006), he is the Honorary President of the Hungarian Manager Association and a member of the Academy of Engineers.

Lepsényi has also won the Széchenyi Prize (1996), the Gábor Dénes Prize (2000), the Award for Development of the Economy by the Chamber of Commerce and Industry of County Bács-Kiskun (2007), and the Commander's Cross Order of Merit of the Republic of Hungary (2009). In 2011 Lepsényi has been honoured with the "Manager of the Year 2010" award for long term business success at Knorr-Bremse Fékrendszerek Kft, the crisis management and his contribution to the success of the Hungarian economy, especially within the automotive industry.

Knorr-Bremse is the world's leading manufacturer of braking systems for rail and commercial vehicles

Rail Vehicle Systems

- Metros
- Streetcars
- Multiple units
- High-speed trains
- Locomotives
- Passenger rail cars
- Freight cars


(((K))) Knorr-Bremse Group

Commercial Vehicles

- Trucks
- Buses
- Engines
- Special vehicles

The Group

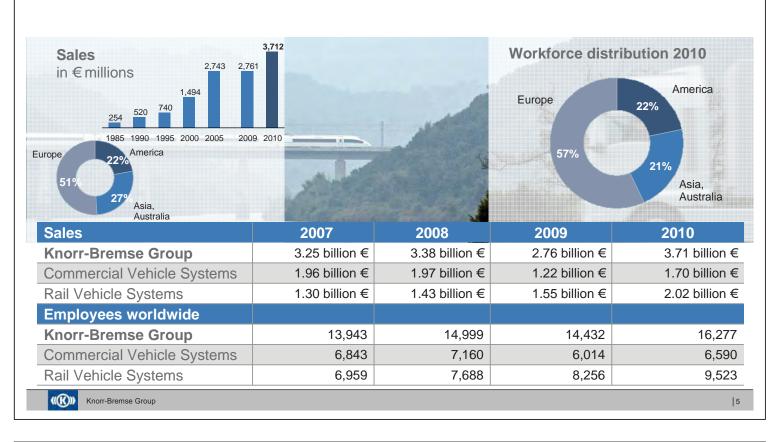
100 years of experience with braking technology

Founding and initial development 1905-1945

- Knorr-Bremse GmbH first set up in 1905 in Berlin by Georg Knorr
- Development of compressed air brake for freight trains enables Knorr-Bremse to become the biggest manufacturer of rail vehicle brakes in Europe
- First Knorr air brake for trucks is patented

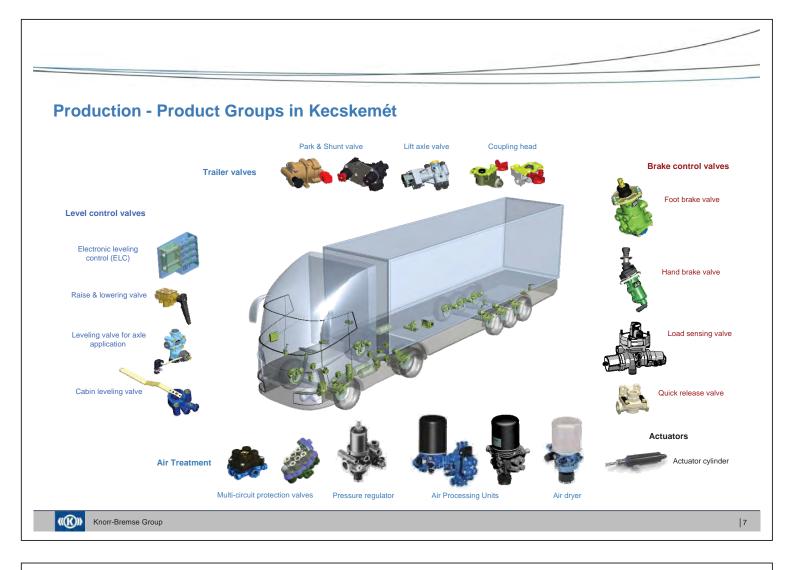
Post-war period and reconstruction 1945-1985

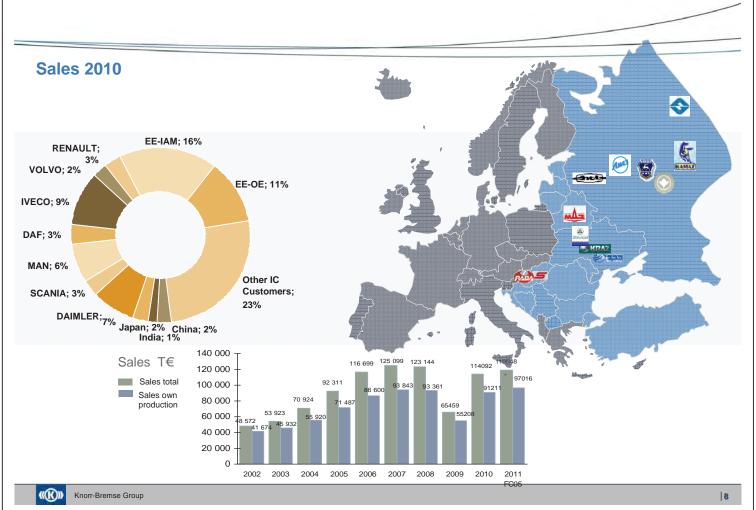
- Confiscation of Berlin plant at end of Second World War
- Munich becomes company's new headquarters
- KE control valve becomes new UIC standard
- Entrance into the USA market with AAR DB-60 valve for rail vehicles

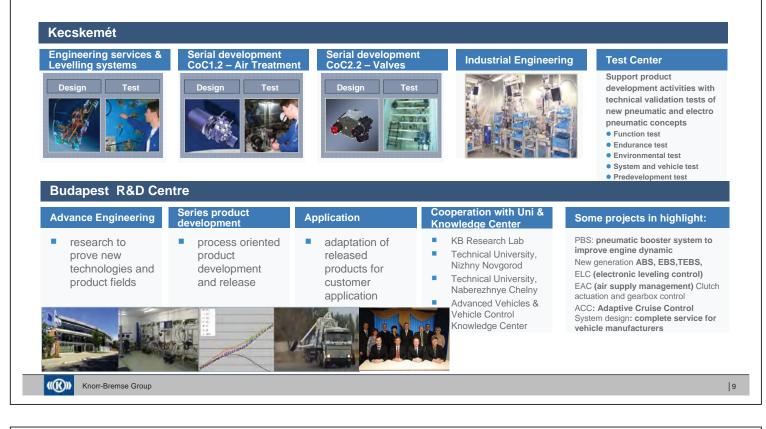


Expansion through concentration 1985-2010

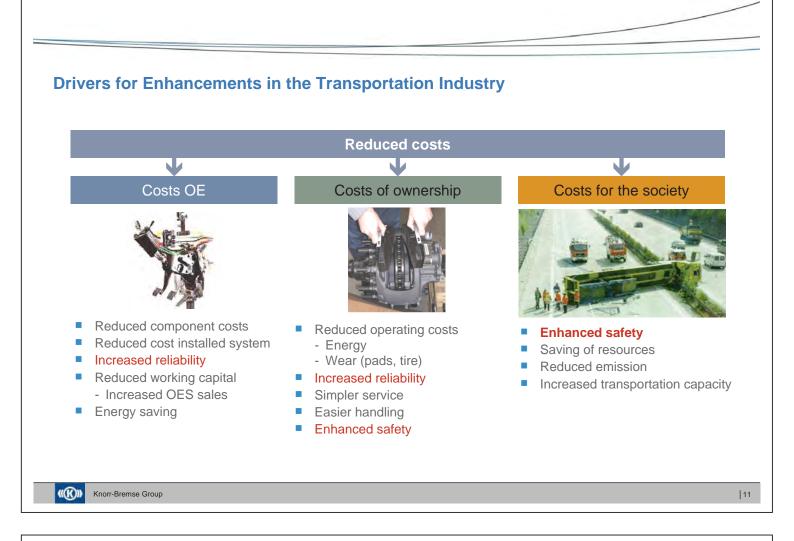
- 1985: Heinz Hermann Thiele takes over company
- Radical restructuring and expansion strategy
- Mass production of pneumatic disc brakes for commercial vehicles starts
 Joint venture with VEB Berliner Bremswerk
- Joint venture with VEB Berliner Bremswerk and Robert Bosch AG
 Acquisition of NYAB JEE Westinghouse
- Acquisition of NYAB, IFE, Westinghouse, Bendix, Zelisko, Microelettrica, Merak
- Joint ventures in rapidly growing Chinese and Russian markets
 2000 Sto division in Chine was the last
- 2009 SfS division in China won the largest order in its over 100-year history

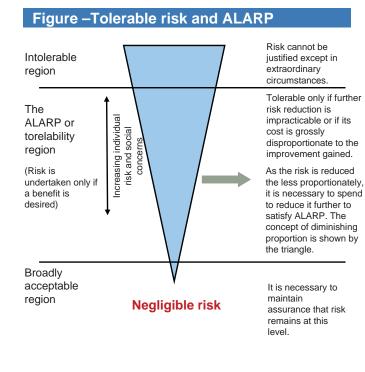

3


Growth rate of Knorr-Bremse Group 1985-2010


Knorr-Bremse in Hungary

Companies	Knorr-Bremse Fékrendszerek Kft.	Knorr-Bremse Vasúti Járműrendszerek Hungária Kft.
Sites	 Kecskemét: - HQ, Production, R&D, Sales Budapest : R&D, Global sourcing 	Budapest: HQ, Production, R&D
Main figures (2010)	 Employees: 1760 R&D expenditure: 6,45 % of sales Sales: 272 Mio EUR 	
Knorr-Bremse Fékrendszerek Kft.	 Production mainly producing air treatment units and valves for air brake systems ABS electronics Sales sales of the whole Knorr-Bremse product portfolio into 21 countries, besides intercompany 	 R&D Predevelopment, researches of future products & technologies serial development software & electronic development – Budapest development of pneumatic units – Kecskemét application projects to fulfill the different customer requirements diagnostic, WTS
Knorr-Bremse Gro	pup	


Research and Development activities in Kecskemét and Budapest


Q-FIRST (1)

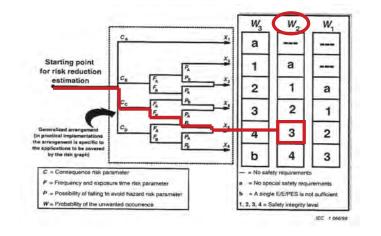
Quality is the order of the day for any manufacturer of safety-relevant systems

Quality is a Core Value!	 We are committed to continuously advance the quality of our products and services. We are a customer driven company providing the most beneficial solutions for our customers. We comply with requirements and continually improve the effectiveness of our Quality management system.
Product Safety is a Critical Success Factor!	 We strive to design and produce products with Zero Defects through the entire supply chain to become considered the benchmark in quality and product safety. We are committed to be the technology and market leader with regard to product safety over the full product life cycle. We develop and provide products that enable our customers to operate vehicles safely to protect human life.
Individual responsibility and ownership is essential!	 We engage everyone in process and product improvements and foster an environment for continuous learning and development. We accept that the responsibility and ownership for quality and product safety rests collectively with each and everyone one of us. We leverage individual knowledge, experience, and competencies across global businesses and cultures.

Tolerable risk target

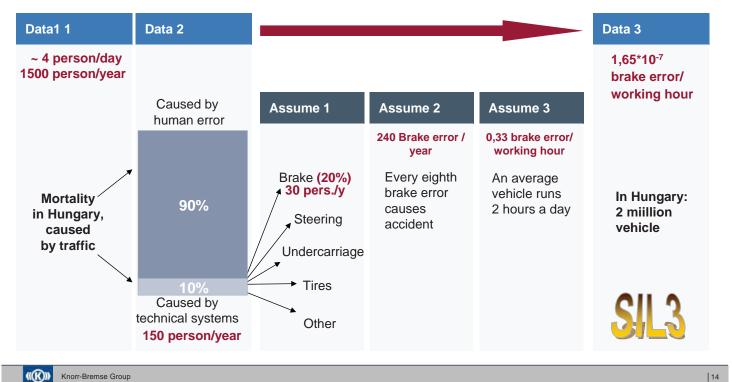
Example of risk classification of accidents

Risk classes	Consequence			
Frequency	Catastrophi c	Critical	Marginal	Negligable
Frequent	1	l.	l.	Ш
Probable	l.	l.	Ш	Ш
Occasional	1	Ш	Ш	Ш
Remote	Ш	Ш	Ш	IV
Improbable	Ш	Ш	IV	IV
Incredible	IV	IV	IV	IV

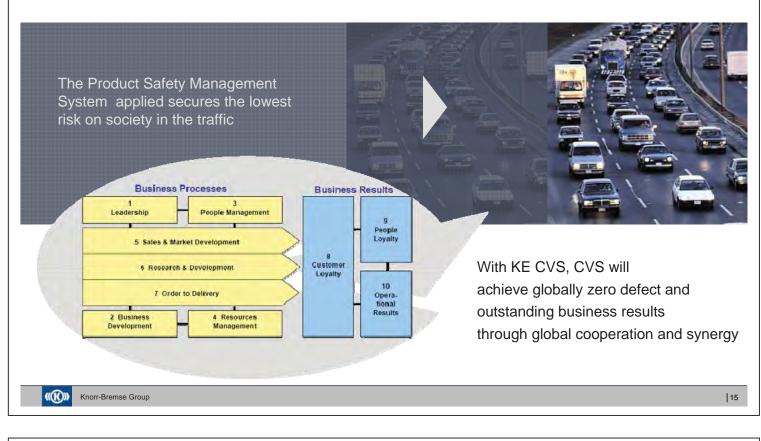

Table Interpretation of risk classes

Risk class	Interpretation
Class I	Intolerable risk
Class II	Undesirable risk, and tolerable only if risk reduction is impracticable or if the costs are grossly disproportionate to the improvement gained
Class III	Tolerable risk if the cost of risk reduction would exceed the improvement gained
Class IV	Negligible risk

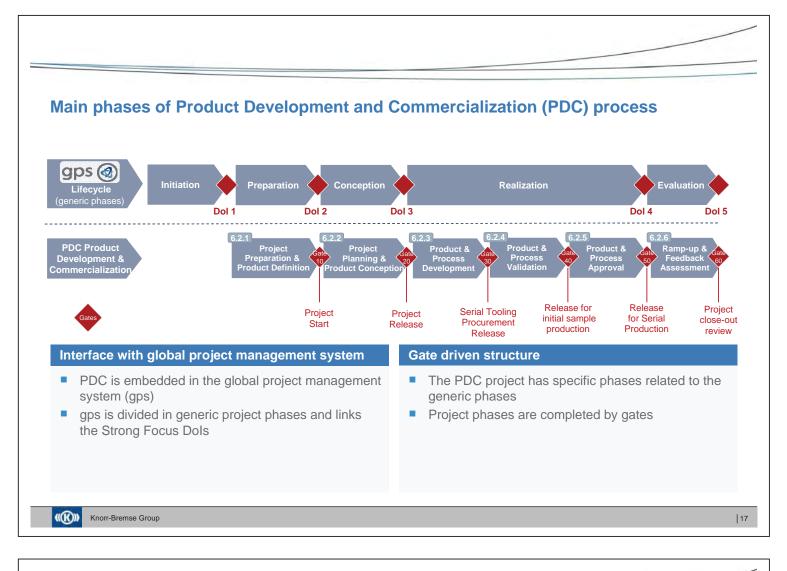
Evaluating risk: a qualitative example

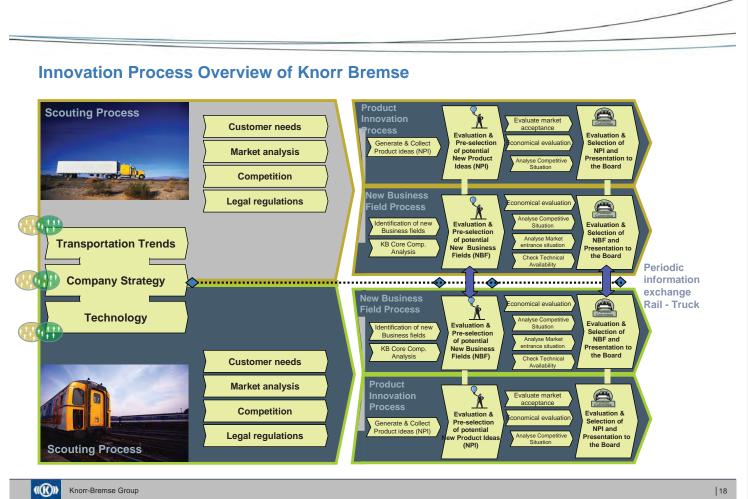

Brake system

- C3:
 - Death of one or more person
- F2:
 - Frequent application of brake system
- P2:
 - No other measures against danger
- W2:
 - The frequency of the unwanted event is low

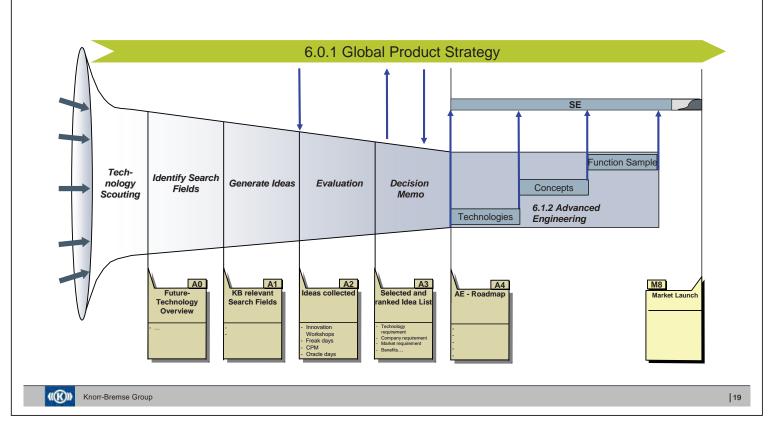

((K))) Knorr-Bremse Group

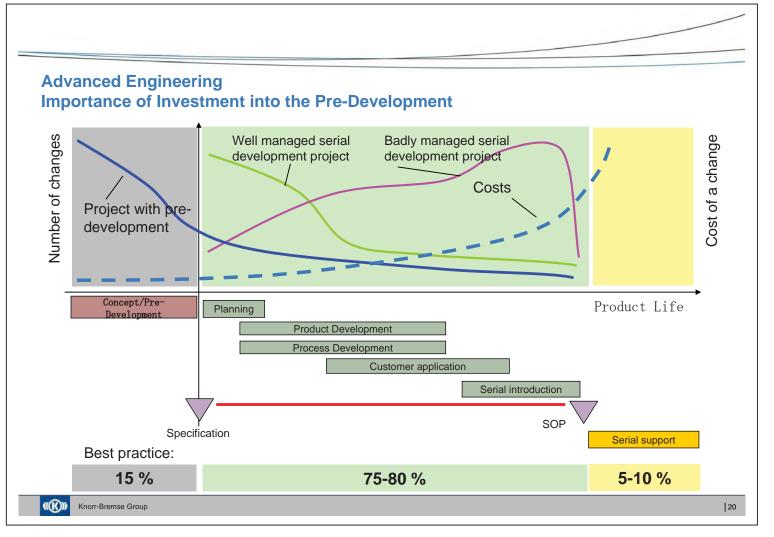
Evaluating risk: a quantitative example

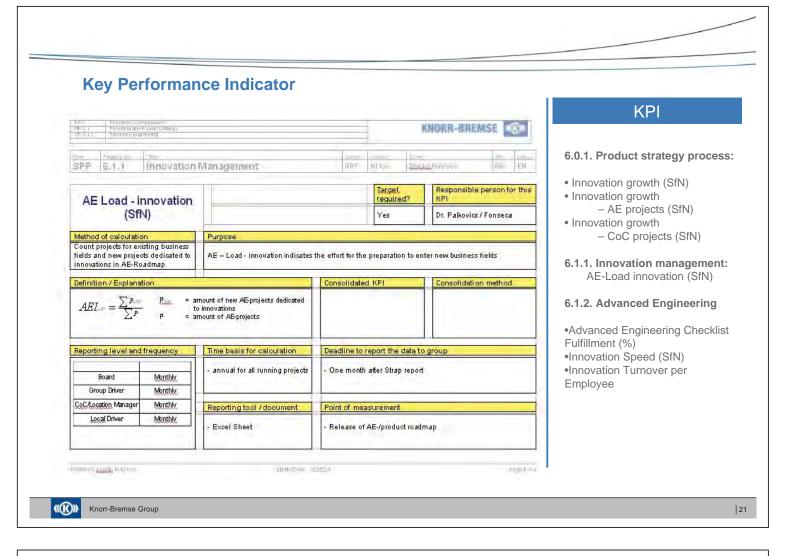


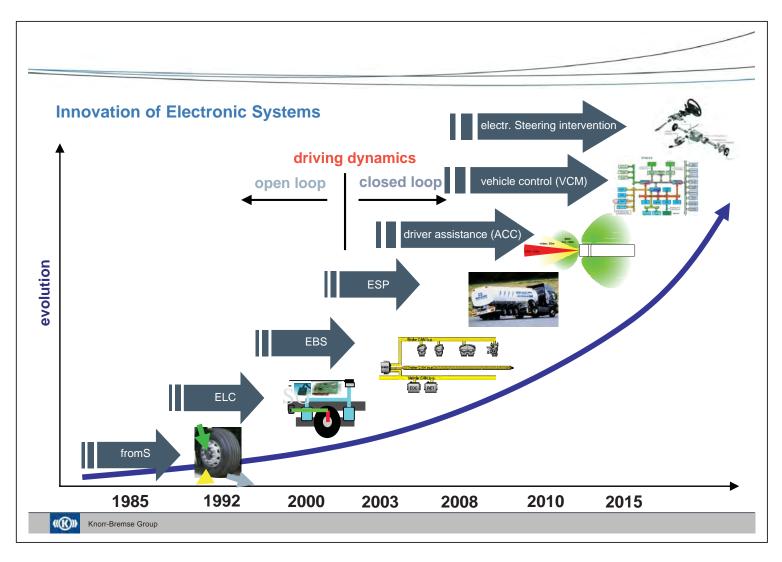

|13

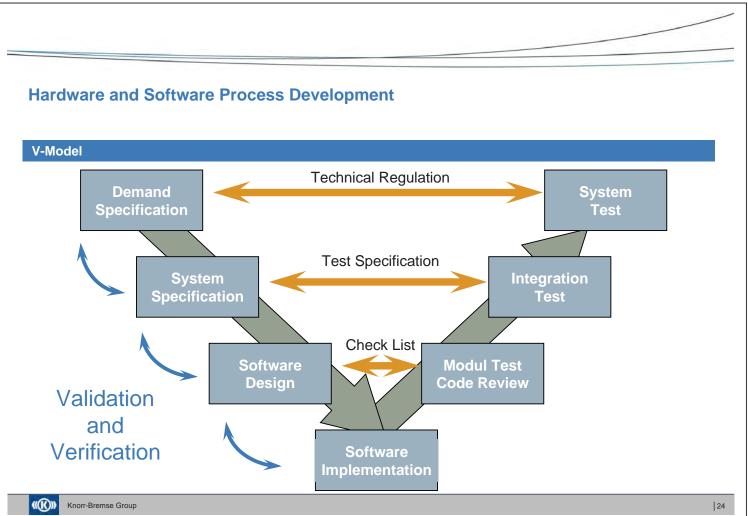
Integrated Management System within the frame of Knorr Excellence








6.1.1 Innovation Management



Phase Name	6.2.1 Project Preparation & Product Definition	6.2.2 Project Planning & Product Conception	6.2.3 Product & Process Development	6.2.4 Product & Process Validation	6.2.5 Product & Process Approval	6.2.6 Ramp-up & 50 Feedback Assessment
Gates	Pro St		ject Too ease Procu	rial Release t oling sam rement produ	iple Se	ase for Projec rial close-o uction review
Phase targets	Assure that customer needs and expectations are clearly under- stood and aligned with business goals	Development of concepts into verified product design for requirement freeze	Product and process development for design freeze and serial tooling procurement	Validate design & production process using samples from series tools & series production equipment	Production of initial samples to get technical approval from the customer	Product launch activities after SOP & evaluation of overall project vs. targets

Software Quality Assurance: Analytical Steps

Analytical steps:

- Review process
- Testing
 - test protocols, failure simulation report, function check lists
 - files from test cabinet, documentation of SW and HW test routine

Certificate: SIL 3 IEC 61508 (Functional Safety of Electrical / Electronic Safety-Related Systems)

driving test

Validation and verification :

- Acceptance test
- SW acceptance protocol,
- SW quality assessment,
- QE1 (before SW development),
- QE2 (after implementation).
- QE3 (just before SW release).

25

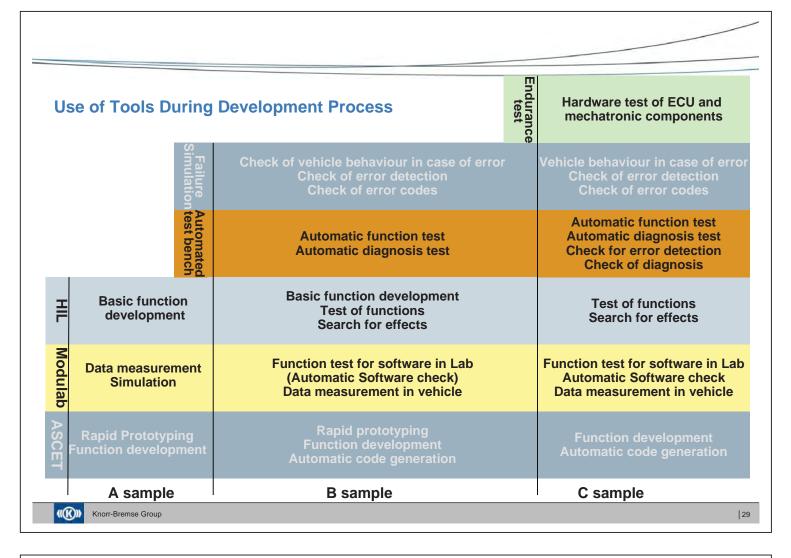
((K)) Knorr-Bremse Group

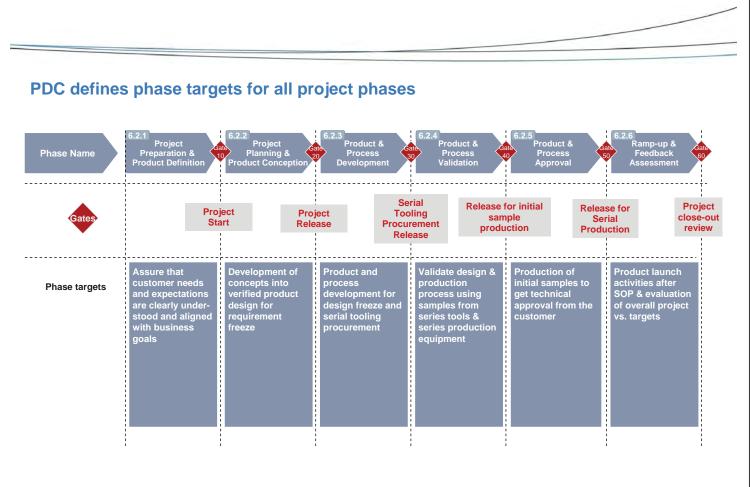
Hardware – In-The-Loop Simulation **Truck & driver simulation** remote control control data acquisition data acquisition CAN (Diadem, GFS) simulation data CAN GPIB data acquisition braking signal converter CAN, analog pressure CAN satisfier (KB) diagnostic interface UPLE (KB) CAN Sensor Diagnostics CAN J1939 ISO SAE relay matrix CAN for failure 0simulation wheel speed signals (KB) (((10 braking system (((())) Knorr-Bremse Group 26

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

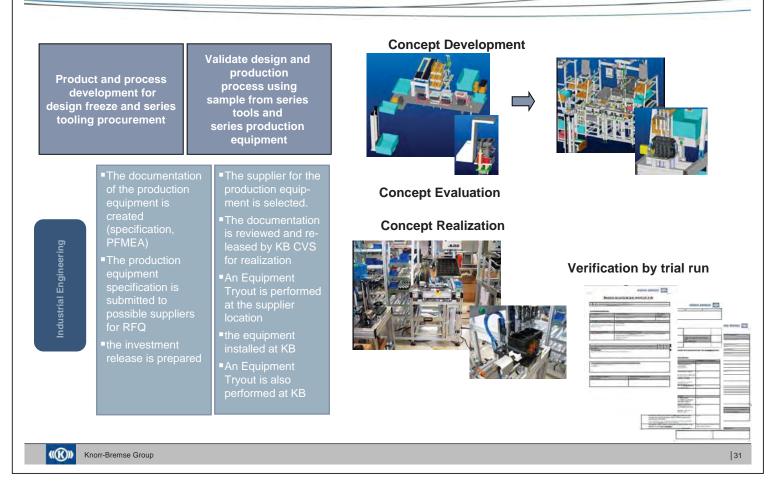
Failure Simulation

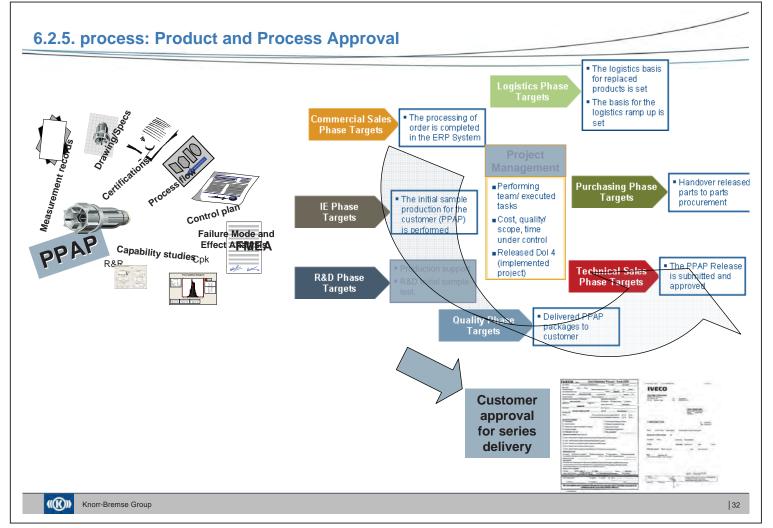
- Safety verification of the braking system
 - short circuits
 - in the wiring harness
 - and interruptions
 - and on the PCB
- Verification by simulation
- Automated execution
- Automated valuation with regard to e.g.
 - controllability
 - braking distance
 - stability (ESP)
 - warning lamps and error storage
- Automated documentation
- Graphical charts for manual evaluation
- Adds to FMEA

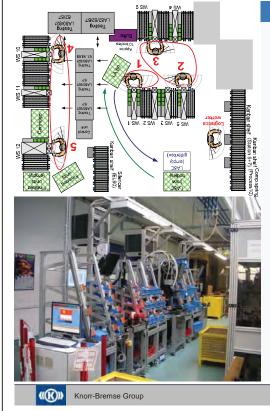

Calculation Example


Number of driving cycles for connector failure simulation: No of pins * (No of pins - 1) / 2 * Number of tests time

Combinations that will destroy ECU or test bench will not be short circuited (Ubatt - GND)


Example EBS2: 55 * 54 / 2 * 6 = 8910 cycles – so many potential failure opportunities only for the ECU


Duration with 120 seconds per cycle: ~ 13 days and nights Cannot be done manually!



6.2.3 and 6.2.4. process: Industrialization

Process industrialization

Development steps:

Main steps for product and process industrialization

- Product specification and development
- DFMEA, PFMEA and control plan creation and deployment
- Manufacturing process concept development
- Manufacturing process fine tuning and equipment specification
- Equipment development with supplier
- Manufacturing release at the supplier
- Manufacturing trial runs at supplier together with customer
- Final manufacturing release on site

Early involvement of customers increases customer comittment and confidence and significantly increases speed for final equipment release.

Standardized work on standardized workplaces

Basic standards for workplaces are defined and implemented

For manufacturing all steps can be consolidated to four main elements that are repeated in complex processes

- Manual assembly
- Greasing
- Pressing
- Screwing

Target is to create modular process elements for each of these manufacturing steps

- Standardization including complete documentation such as SOS, PFMEA or control plans.
- Standardize interfaces between the process elements to be able to combine easily without additional modification.

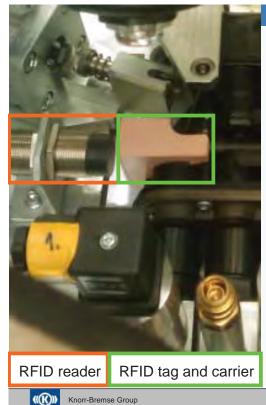
33

Workplac	e standardization			
Workplace standardization		Full process	Sensor controlled	Low cost
KB Kecskemét developed three standards		control workplace	manual workplace	manual workplace
for workplaces.				
Workplaces are adjusted to the criticality				
•			a a a a	
and complexity of the products.				
•	cost optimized workplaces with			
adjusted proc	cess requirements			
	Electronic screw drivers	X		
	Tool monitoring by sensor	Х	Х	
	Type label checked by camera	Х		
	Clear separation of good and rejected tests	X	Х	
	Pick to light	Х	Х	
Product Quality	Automatic label printing after good test	Х		
	Auto feeding for type label		Х	
	Shuttle control to avoid mixing		Х	
	Shelf identification (material in / out)	Х	Х	Х
	Poka-Yoke	X	Х	X
	Jidoka	X	Х	
Standardized work	Dedicated place for every process	Х	Х	X
Material Flow	One piece / X-piece flow	Х	Х	X
	Two bin Kanban for material feeding	Х	Х	X
	Manual shuttle system		Х	
Cost optimization	Standard Aluminium frame	x	Х	x
	Simple fixtures			X

RFID

EOL test of products – full traceability by RFID

- More independent test rig on a conveyor, fully automatic test process
- Individual RFID identification for each palettes and parts (15 palette)


100 (100 and 100)

- All measurement results are stored in a SQL database
- The parts are tested together with the palettes. **RFID reader**

conveyor

Test connectors

Process monitoring

Equipment and methods:

- RFID provides the technology to record all process parameters
 Product parameters
 - All parameters are linked to the product
 - Full traceability is given

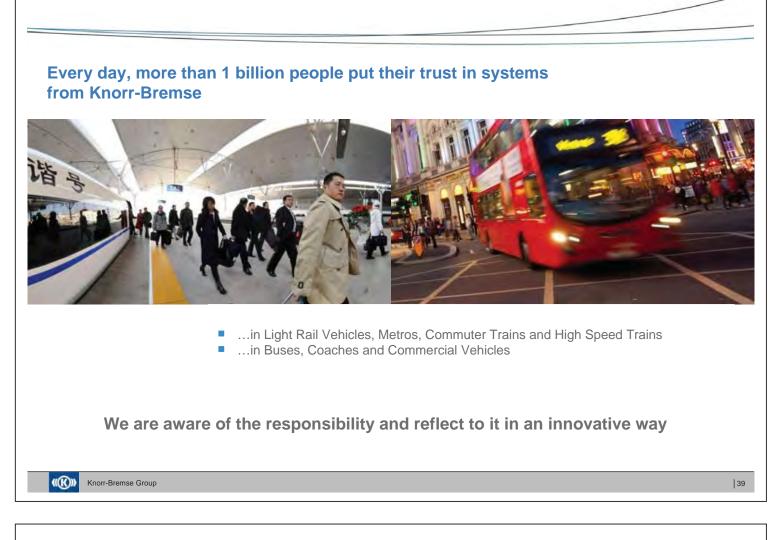
Closed loop and self adjusting

- Manufacturing parameters can vary due to different component lots
- Learning software and closed loop can be applied by connecting manufacturing parameters and test results using the RFID tracing

Online manufacturing supervision

- Online capability studies are performed to initiate corrective actions before 6 Sigma limits are reached
- All manufacturing parameters are continuously monitored and capability studies are calculated by the system

Full process control and forced sequence


Examples of new assembly lines:

- Main policy for new equipment are
 - Full process control, recording and forced sequence
 - Standardised and modular work place principle allowing easy orientation for operator
 - 0-defect and full traceability

- New manufacturing lines at Knorr are developed with the Zero defect approach
- These new lines are the main contributors to a high customer satisfaction during the last years
- The 0-defects aren't fully reached yet, but these new lines contribute with a very minor 0-mileage defects

37

		KNORR-BREMSE (())
Thank you very much for yo	our attention!	
Knorr-Bremse Fékrendszerek Kft. Mr. István Lepsényi	Phone: +36 76 511 101 Fax: +36 76 481 363	
	Mobile: +36 20 394 4400	
Szegedi út 49. 6000 Kecskemét, Hungary	Email: <u>istvan.lepsenyi@knorr-bremse.com</u> www.knorr-bremse.hu	