EOQ2011 Budapest, Hungary

A Model for Personnel Allocation at Hospitals

Ryoko SHIMONO
Shogo KATO
Satoko TSURU
Yoshinori IIZUKA
The University of Tokyo

- I. Introduction
- II. Strategies for Developing the Model
- III. Model Explanation through Case Study
- IV. Verification of the Model
- V. Summary and Future Task

AGENDA

- I. Introduction
- II. Strategies for Developing the Model
- III. Model Explanation through Case Study
- IV. Verification of the Model
- V. Summary and Future Task

Motivations

- Social concern about the assurance of healthcare quality
- Quality of healthcare relies heavily on personnel's competence
- However, at hospitals available human resources are limited.

A Method for personnel allocation for quality assurance with limited human resources is required

3

Personnel Allocation for Quality Assurance

■ Required Competence ≦ Possessed Competence

C lizuka-Tsuru Lab., The University of Tokyo

5

Issues to Implement the Concept

- The concept itself is understood well for hospitals
- However, the concept has not implemented effectively for two reasons

C lizuka-Tsuru Lab., The University of Tokyo

6

Purpose and Strategy

- Purpose of this study
 - Develop a method for personnel allocation in order to achieve quality assurance with limited human resources at hospitals
- Strategy: Two Issues have to be addressed
 - 1) Derive criteria to evaluate competence for quality assurance
 - 2) Derive logic for personnel allocation in the viewpoints of human resource utilization

7

- I. Introduction
- II. Strategies for Developing the Model
- III. Model Explanation through Case Study
- IV. Verification of the Model
- V. Summary and Future Task

Strategy 1)

Items for Evaluating Competence

 Items effect quality are derived through the deployment of the inscope work

Strategy 2)

Classify Possessed Competence

It is necessary to define criteria for each item to be evaluated

Level	Level 1	Level 2	Level 3	Level 4		
Generic content per level	Ability to implement with on-site help	Ability to implement in typical cases by oneself and to ask the highly-leveled personnel for help in standard or complex cases	*	Ability to implement in complex cases by oneself		
Image per level	Highly-level All cases	Typical Cases	Standard Cases	All Cases Includes Difficult cases		

Scale for Competence can distinguish level 2 from level 3.

"Standard cases" means cases for which standardized response processes are defined, and does not mean "Typical or simple cases".

C lizuka-Tsuru Lab., The University of Tokyo

Utilize Level 2 Personnel

Level 2 personnel is in the situation of Required > Possessed.

- Two types of conditional allocation
 - A) Allocated in combination with a highly-leveled (Level 3 or 4) personnel (Receive support by high-level personnel for non-typical cases)
 - B) Allocated with waiting instructions in non-typical cases (Avoid non-typical cases)

ℂ lizuka-Tsuru Lab., The University of Tokyo

11

- I. Introduction
- II. Strategies for Developing the Model
- III. Model Explanation through Case Study
- IV. Verification of the Model
- V. Summary and Future Task

- Inputs to the model
 - the in-scope work, the in-scope personnel

Model Explanation through Case Study

- Intermediate outputs of the model
 - Actions, Four-leveled Scale, Each personnel's possessed competence

The intermediate outputs of the Model

1-2: Describe Actions 2-2:
Derive Four-leveled Criteria for
Evaluating Competence

2-3 : Determine Each
Personnel's Possessed
Competence

	Actions Evaluating Competence Competence																					
	Unitrocess	Actions Four-leveled Scale								Each Personnels Competence per Action					Each Personnels Competence per Unit Process					er		
	Unit	Action Type	Content	Level1	Level2	Level3	Level4	A	В	С	D	Е	F	G I	ı	A	В	C I	D E	F	G	н і
			M easure specimens with testing instruments		Ability to measure specimens of normal size	Ability to measure small specimens		3	3	3	3	3	3	3	3 3							
	E E		Judge testing results within an upper limit and lower limit		Ability to know how to judge testing results within an upper lim it and lower lim it by the manual	Ability to judge testing results within an upper limit and lower limit by the manual	Ability to judge and make a respondes to the testing results within an upper limit and lower limit	4	4	4	4	4	4	3 4	4 4							
0	10 1		Judge testing results within an allowable value of remeasurement		Ability to know how to judge testing results within an allowable value of remeasurement by the manual	Ability to judge testing results within an allowable value of remeasurement by the manual	Ability to jidge and make a respondes to the testing results within an allowable value of remeasurement	3	3	3	3	3	3	3 3	3 3		2	2	2 3	3 3	1	2 2
		Check	Judge testing results by the previous value		Ability to compare the testing results with the previous value	Ability to judge the testing results by comparison with the previous value and by consideration of patient's information	Ability to judge the testing results by comparison with the previous value and by consideration of any factors and make responses	4	4	3	3	3	3 :	2 4	4 3					7		
	(Control	M onitor and handle the m easurem ent m achine and conveyor		Ability to monitor and recognize the troubles of the measurement machine and comveyor	Ability to monitor and make a first-aid action of the measurement machine and conveyor	Ability to m onitor and handle the troubles of the measurement machine and conveyor	2	2	2	2	3	3	0 2	2 2							

Model Explanation through Case Study

- Intermediate outputs of the model
 - Actions, Four-leveled Scale, Each personnel's possessed competence

The intermediate outputs of the Model

1-3: Determine the Number of Persons Required

2-4: Derive the Number of Personnel per Competence Level

3-1 : Determine the Sufficiency

	Intermediate 0 utput	The Number of Personnel		Numbeersonne ersonne	e1	In cu f	iency / ficiency
Unit Process/ S	S ituation	Required	Level	Level	Level 2	Calculation Result	Determination Result
M easurem ent	Day Shift	3	0	2	G	-1	In sufficient
of Specimens	N ight Shift	1	U	4	6	-0.8	Insufficient

★Calculation Formula

="The Number of Personnel Possessed" - "The Number of Personnel Required"

★How to determine whether the number of personnel is sufficient or not Calculation Result ≥0 → Sufficient Calculation Result <0 → Insu f f icient

Model Explanation through Case Study

Outputs of the model

? ?t??ts of t?e ? o?el for t?e ? ase

Probability and condition of allocation are showed For each person

	Situation	Number of	A	В	С	D	Е	F	G	Н	I
Unit Process	(Shift etc.)	Personnel Required	Licensed, Expert			Licensed, Mid-level					Licensed, Expert
M easurem ent	Day Shift	3	O *	O *	O *	O *				() *	O*
of Specimens	N ight Shift	1	<u></u> **	<u></u> **	<u></u> **	O**	0	0		<u></u> **	O**

	Meaning of Circles								
0	0 ne of the personnelmarked "○"has to be albcated								
	Alpersonnelmarked "●" have to be albcated								
	Cannot be albcated								
	M eaning of Superscripts								
*	* Conditionalalboation with a highly-leveled personnel (Condition 1)								
**	Conditionalalboration with waiting in non-typical cases (Condition 2)								

C lizuka-Tsuru Lab., The University of Tokyo

2

- I. Introduction
- II. Strategies for Developing the Model
- III. Model Explanation through Case Study
- IV. Verification of the Model
- V. Summary and Future Task

Verification Settings

- Objective
 - Compare our model to traditional allocation methods in terms of quality assurance with human resource utilization
- Procedure

Consideration by Manager N

Analyze differences

- Cases: 3 unit processes of clinical test process
 - Blood Sample Taking
 - Pre-measurement Treatment
 - Measurement of Specimens

Extraction of Differences 2 et 2 een T2 o 2 esults

Five Types of difference between two results

	<i>7</i> 1	
No.	Application Results	Non-application Results
1	Allocation with condition 2(0**)	Allocation without conditions (○)
2	Allocation with condition 1(0*)	Allocation without conditions (○)
3	Allocation with condition 2(0**)	Non Allocation (No symbol)
4	Allocation without condition(○)	Non Allocation (No symbol)
5	Having possibility of allocation (©)	Having sureness of allocation (●)

24

Verification Results

The superiority of our model in deriving allocation patterns for the case unit processes is pointed

25

Scope of Applicability of the Model

- Four-scaled Actions Level 4

 Level 3

 Level 2

 Level 1

The developed model can be applied for any works at hospitals under the condition that the work is standardized

- I. Introduction
- II. Strategies for Developing the Model
- III. Model Explanation through Case Study
- IV. Verification of the Model
- V. Summary

